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Abstract. Using the boundary Yang–Baxter equations and exact results on the bulkS-matrices,
we compute exact boundary scattering amplitudes of the supersymmetric sine–Gordon model
with integrable boundary potentials.

1. Introduction

Quantum integrable models in two dimensions have been actively studied, since we can
learn many aspects of non-perturbative physics which cannot be realized in more realistic
models. These models provide an arena where one can test new ideas and get meanings
of nontrivial solutions. In addition these models do provide realistic models in a limited
number of applications. The quantum sine–Gordon (SG) model is the most well known
exactly solvable interacting quantum field theory. Due to many theoretical developments,
we now understand many nonperturbative behaviours of this model. Among them is the
exactS-matrix SSG of the solitons (+) and antisolitons (−) given by [1]

S++
++(θ) = S−−

−−(θ) = U(θ) sinh[λ(iπ − θ)]

S+−
−+(θ) = S−+

+−(θ) = U(θ) sinh(iπλ)

S+−
+−(θ) = S−+

−+(θ) = U(θ) sinh(λθ)

(1)

whereU(θ) is defined by

U(θ) = 1

iπ
0(λ)0

(
1 + i

λθ

π

)
0

(
1 − λ− i

λθ

π

) ∞∏
l=1

Fl(θ)Fl(iπ − θ)

Fl(0)Fl(iπ)

Fl(θ) = 0(2lλ+ i λθ
π
)0(1 + 2lλ+ i λθ

π
)

0((2l + 1)λ+ i λθ
π
)0(1 + (2l − 1)λ+ i λθ

π
)

(2)

whereλ = 8π
β2 − 1 with β a usual coupling constant.

Recently there has been a lot of development in the study of the integrable models on
the half-line or other restricted domain of the 1D space. The main motivation is that these
models can be applied to 3D spherically symmetric physical systems where thes-wave
element becomes dominant. The one-channel Kondo problem and the monopole-catalysed
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proton decay are frequently cited examples of these. The quantum SG model on the half-line
preserves the integrability if the boundary potential is given by [2]

Lb = 3 cos

(
β(φ − φ0)

2

)
. (3)

The integrability makes it possible to describe this theory as a factorizable scattering theory
of the solitons and their bound states.

Due to the existence of the boundary, we should introduce one more scattering
amplitude, the boundary scattering amplitudesRba(θ), in addition to the bulk scattering. For
the bulk, the multi-particle scattering amplitudes are factorized into a product of two-particle
S-matrices if they satisfy the Yang–Baxter equation (YBE) as a consistency condition. For
the boundary scattering, where particles scatter off the boundary, we need a new type of
consistency condition, namely the boundary Yang–Baxter equation (BYBE) (also known as
the reflection equation), which can be expressed as∑
c1,c2,d1,d2

Sc1c2
a1a2
(θ1 − θ2)R

d1
c1
(θ1)S

d2b1
c2d1

(θ1 + θ2)R
b2
d2
(θ2)

=
∑

c1,c2,d1,d2

Rc2
a2
(θ2)S

c1d2
a1c2
(θ1 + θ2)R

d1
c1
(θ2)S

b2b1
d2d1

(θ1 − θ2). (4)

Besides the YBE, we need the unitarity and crossing-symmetry requirements to fix the
scattering amplitudes completely up to CDD ambiguity. For the boundary scattering, this
condition is expressed as the boundary cross-unitarity condition,

Rbā

(
iπ

2
− θ

)
= Saba′b′(2θ)Ra

′
b̄′

(
iπ

2
+ θ

)
. (5)

For later use, we summarize the known results of the boundary SG model (A, A andB
stand for soliton, antisoliton, and the boundary, respectively):

A(θ)B = P+(θ)A(−θ)B +Q+(θ)A(−θ)B
A(θ)B = P−(θ)A(−θ)B +Q−(θ)A(−θ)B
P±(θ) = cos(ξ ∓ iλθ)R(u) Q± = −k

2
sin(2iλθ)R(u)

(6)

where the prefactor is given byR(θ) = R0(θ)R1(θ) with

R0(θ) = 0
(
1 + 2i λθ

π

)
0

(
λ− 2i λθ

π

)
0

(
1 + 2i λθ

π

)
0

(
λ− 2i λθ

π

) ∞∏
k=1

F2k(2θ)

F2k(−2θ)

R1(θ) = 1

cosξ
σ (η,−iθ)σ (iϑ,−iθ)

(7)

whereFk is given in equation (2) and

σ(x, u) = 5(x, π2 − u)5(−x, π2 − u)5(x,−π
2 + u)5(−x,−π

2 + u)

52(x, π2 )5
2(−x, π2 )

5(x, u) =
∞∏
l=0

0[ 1
2 + (2l + 1

2)λ+ x
π

− λu
π

]0[ 1
2 + (2l + 3

2)λ+ x
π

]

0[ 1
2 + (2l + 3

2)λ+ x
π

− λu
π

]0[ 1
2 + (2l + 1

2)λ+ x
π

]
.

(8)

The parametersη, ϑ are related tok, ξ by

cosη cosϑ = −1

k
cosξ cos2 η + cos2 ϑ = 1 + 1

k2
. (9)

The relationship between these parameters and those in equation (3),M,φ0, is not
completely understood [2].
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2. Supersymmetric sine–Gordon theory without boundary

Our objective in this paper is to solve theN = 1 SUSY sine–Gordon (SSG) theory on
the half-line with an appropriate boundary potential which preserves the integrability. The
action of the SSG model is given by [4]

S =
∫

dx dt

[
1

2
(∂µφ)

2 − iψ 6∂ψ − m2

β2
cos2 φ − 2m

(
cos

βφ

2

)
ψψ

]
(10)

whereφ is a real scalar field andψ is a Majorana fermion.β is a coupling constant of the
SG theory andm is the mass parameter denoting the deviation from the massless theory.
The SSG theory is integrable because it is equivalent to Toda theory on the twisted super
affine Lie algebraC(2)(2) [5]. The equation of motion of the SSG theory can be written as
a super zero-curvature condition. An infinite number of conserved charges at the classical
level were derived and seem to be preserved at the lowest order of quantum level. Due
to the integrability, there exist solitons and anti-solitons, as well as their bound states. All
these particles form a SUSY multiplet. In this model the SUSY algebra is extended by the
central charge which is the topological charge of the soliton and the antisoliton [3].

Exact results on the SSG theory have been derived due to the development of the
perturbed CFTs. It has been well known that theS-matrix of the minimal CFTs,Mp/p+1,
with the central chargec = 1 − 6

p(p+1) perturbed by the least relevant operator can be
obtained from the SG theory by restricting theS-matrix to the RSOS type using the hidden
quantum group symmetry [7, 8]. The particle spectrum of this so-called restricted SG (RSG)
theory is composed of the kinksKab which connect two adjacent spinsa, b with |a−b| = 1

2,
instead of the (anti)solitons.

The S-matrix of the RSG theory,S(p)RSG, is given by

Sabdc (θ) = U(θ)(Xabcd )
− θ

2π i

[√
Xabcd sinh

(
θ

p

)
δdb + sinh

(
iπ − θ

p

)
δac

]
(11)

for the process|Kda1(θ1)〉 + |Ka2b(θ2)〉 → |Kdc1(θ2)〉 + |Kc2b(θ1)〉 where

Xabcd =
(

[2a + 1][2c + 1]

[2d + 1][2b + 1]

)
with q-number [n] = (qn − q−n)/(q − q−1) andq = −e−iπ/p. The allowed values of spins
are 0, 1

2, 1, . . . , p2 − 1.
The exactS-matrix of the SSG theory has been obtained as a by-product from the result

of the perturbed super CFT; the perturbed super CFTs have theS-matrix in the factorized
form

SSCFT(θ) = S
(4)
RSG(θ)⊗ S

(p)

RSG(θ) (12)

and by ‘unrestricting’S(p)RSG, one obtains the SSG (anti)solitonS-matrix [9]:

SSSG(θ) = S
(4)
RSG(θ)⊗ SSG(θ). (13)

The firstS-matrix factor which commutes with the SUSY charges, applies to the superspace
indices of the SSG particles and the second one is nothing but the SG (anti)solitonS-matrix,
equation (1), however, with different parameterization

λ = 2π

β2
− 1

2
. (14)

By denoting the SG solitons with topological charge±1 by |A±〉, the particle states
of the SSG theory can be denoted by|K±

ab〉 = |Kab〉 ⊗ |A±〉, where the first quantum
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number carries the SUSY charges and the second the topological charges. Explicit SUSY
transformations are as follows [10]:

Q|K±
0 1

2
〉 = −ieθ/2|K±

1 1
2
〉 Q|K±

0 1
2
〉 = ∓ie−θ/2|K±

1 1
2
t〉

Q|K±
1 1

2
〉 = ieθ/2|K±

0 1
2
〉 Q|K±

1 1
2
〉 = ±ie−θ/2|K±

0 1
2
〉 (15)

and on the charge conjugated states by

Q|K±
1
2 0

〉 = eθ/2|K±
1
2 0

〉 Q|K±
1
2 0

〉 = ±e−θ/2|K±
1
2 0

〉
Q|K±

1
2 1

〉 = −eθ/2|K±
1
2 1

〉 Q|K±
1
2 1

〉 = ∓e−θ/2|K±
1
2 1

〉. (16)

From these relations, one can check that the SUSY charges satisfy

Q2 = P = eθ Q
2 = P = e−θ and QQ+QQ = 2T . (17)

The central chargeT is ±1 corresponding to the topological charges of the SSG solitons.

3. Boundary scattering matrices of the supersymmetry sine–Gordon theory

Integrability is often preserved by the introduction of the SUSY. Therefore, one can naturally
guess that the SUSY extension of the SG theory on the half-line can be integrable. In recent
work, it has been claimed that the half-line SSG theory is integrable if one introduces a
well-defined boundary potential. In [6], it has been shown that the SSG model can preserve
integrability with the following boundary potential:

Lb = 3 cos

(
β(φ − φ0)

2

)
+Mψ̄ψ + εψ + ε̄ψ̄ . (18)

This potential, however, does not preserve supersymmetry on the bulk. In fact, one can
at most restore half of the bulk supersymmetry,Q ± Q. This is obtained by tuning the
parameters of the boundary potential to following values:

3 = ±2m

β
φ0 = 0 M = ±1 ε = ε̄ = 0.

In this paper, we shall be mainly concerned with integrability of the SSG model on the
half-line and not yet be concerned with the preservation of the bulk supersymmetry. Due
to this integrability, we can describe the boundary SSG model as a scattering theory where
the amplitudes can be obtained from the BYBE.

Since the bulk SSGS-matrix has a factorized form, we will restrict ourselves to finding
the boundary scatteringR-matrix in the factorized form

RSSG(θ) = RSUSY(θ)⊗ RSG(θ) (19)

as well. So each factor satisfies the boundary YBE, equation (4), separately. The second
factor is the usual SG part, equation (6), withλ given by equation (14). The first factor is
what we are going determine based on the boundary YBE.

This boundary scattering matrix satisfies the boundary YBE in the RSOS representation
given by [11–13]∑
a1,b1

Rabb1
(θ1)S

ac
b1a1
(θ2 + θ1)R

a1
b1b2
(θ2)S

a1c
b2a2
(θ2 − θ1)

=
∑
a1,b1

Sacba1
(θ2 − θ1)R

a1
bb1
(θ2)S

a1c
b1a2
(θ2 + θ1)R

a2
b1b2
(θ1) (20)
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whereRabc(θ) denotes the boundaryS-matrix and the bulk scattering matrixSabcd (θ) is given
by equation (11).

In generalRabc(θ) contains both diagonal and off-diagonal scattering components, which
can be written as

Rabc(θ) = R(θ)(Xbcaa)
− θ

2πi [δb 6=cXabc(θ)+ δbc(δb−1/2,aUa(θ)+ δb+1/2,aDa(θ))] (21)

whereR(θ) have to be determined from the boundary crossing and unitarity constraints,
while Xabc andUa,Da have to be determined from the BYBE. An overallq-number factor
is multiplied by the above to cancel that from the bulkS-matrix in order to simplify the
BYBE. For p = 4, there are three RSOS spins labelled by 0,1

2, and 1. The unknown

scattering amplitudes areU0,D1, U 1
2
,D 1

2
for diagonal scattering weights andX

1
2
01, X

1
2
10 for

off-diagonal scattering weights.
Substituting equation (21) into the BYBE, one finds that the unknowns satisfy the

following equations:

X
1
2
01(θ

′)X
1
2
10(θ) = X

1
2
01(θ)X

1
2
10(θ

′)

U 1
2
(θ)(1 +

√
2f−)+D 1

2
(θ ′)(1 +

√
2f+)(1 +

√
2f−) = U 1

2
(θ ′)+D 1

2
(θ)(1 +

√
2f+)

D 1
2
(θ)(1 +

√
2f−)+D 1

2
(θ ′)(1 +

√
2f+) = (1 +

√
2f−)D 1

2
(θ ′)+ U 1

2
(θ)(1 +

√
2f+)

U0(θ
′)D1(θ)f+

(
1 + f−√

2

)
+D1(θ

′)D1(θ)f−

(
1 + f+√

2

)
= U0(θ)D1(θ

′)f+

(
1 + f−√

2

)
+ U0(θ

′)U0(θ)f−

(
1 + f+√

2

)
(22)

where

f− = sinh( θ
′−θ
4 )

sinh( iπ−θ ′+θ
4 )

f+ = sinh( θ
′+θ
4 )

sinh( iπ−θ ′−θ
4 )

.

It is important to point out thatU 1
2

(U0) is coupled toD 1
2

(D1) through the BYBE,

and the two equations relatingU 1
2
,D 1

2
are there only ifX

1
2
01, X

1
2
10 are nonvanishing. If the

later are taken to be zero in the first place, i.e. off-diagonal scattering is forbidden, then the
BYBE does not provide any information onU 1

2
,D 1

2
, a case we will elaborate later.

From equation (22), we have

X
1
2
01(θ) ∝ X

1
2
10(θ). (23)

The constant of proportionality can actually be shown to be a gauge factor, hence the
difference between these two off-diagonal scattering amplitudes is not significant at this
point. While the rest of the equations can be turned into ordinary differential equations in
the limit θ ′ → θ , giving respectively

[U̇ 1
2
(θ)+ Ḋ 1

2
(θ)] tanh

θ

2
+ 2[U 1

2
(θ)+D 1

2
(θ)] = 0

[U̇ 1
2
(θ)− Ḋ 1

2
(θ)] coth

θ

2
− 2[U 1

2
(θ)−D 1

2
(θ)] = 0

(24)

and

Ṙ(θ) tanh
θ

2
= R(θ)2 − 1 (25)
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whereR(θ) ≡ D1(θ)/U0(θ) and˙ denotes differentiation with respect toθ . These equations
can be easily integrated to give

U 1
2
(θ) = B

sinh θ2
+ C cosh

θ

2

D 1
2
(θ) = B

sinh θ2
− C cosh

θ

2

D1(θ)

U0(θ)
= 1 − A sinh θ2

1 + A sinh θ2

(26)

whereA,B,C are free parameters.
Next, we want to determine the overallR(θ) with the use of the boundary unitarity and

crossing symmetry conditions which can be summarized as∑
c

Rabc(θ)R
a
cd(−θ) = δbd

∑
d

Sacbd(2θ)R
d
bc

(
iπ

2
+ θ

)
= Rabc

(
iπ

2
− θ

)
. (27)

First we consider the commonR(θ) factor of the weightsX
1
2
10, X

1
2
01, U2,D2. The above

two conditions give respectively

R(θ)R(−θ)
(
X

1
2
01X

1
2
10 + C2 cosh2

θ

2
− B2

sinh2 θ
2

)
= 1 (28)

and

U(2θ)R

(
iπ

2
+ θ

)
sinh

(
iπ

4
− θ

2

)
= R

(
iπ

2
− θ

)
. (29)

To arrive at the above, use has been made of the following relations:

D 1
2
(θ) = D 1

2
(iπ − θ)

[
1 +

√
2 sinh( iπ−2θ

4 )

sinh θ2

]

U 1
2
(θ) = U 1

2
(iπ − θ)

[
1 +

√
2 sinh( iπ−2θ

4 )

sinh θ2

] (30)

which can be obtained from equation (22), taking the limitθ ′ → iπ − θ . In the unitarity

condition, the non-zero factorsX
1
2
01 andX

1
2
10 can be absorbed intoR(θ) and we set it as−1

for convenience.
To solve forR(θ), we write

R(θ) = sinh
θ

2
R0(θ)R1(θ)

where now

R0(θ)R0(−θ) = 1 U(2θ)R0

(
iπ

2
+ θ

)
sinh

(
iπ

4
+ θ

2

)
= R0

(
iπ

2
− θ

)
(31)

whose minimal solution does not depend on the free parametersB,C.
While R1 contains all the information of the boundary conditions and satisfies

R1(θ)R1(−θ)
[
B2 + (1 − C2) sinh2 θ

2
− C2 sinh4 θ

2

]
= 1 R1(θ) = R1(iπ − θ) (32)

the minimal solution is given by equation (7) with the following replacements:

cos2 ξ → B2 k2 → −C2 λ → 1
2.
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TheR(θ) factor of the weightsU0,D1 need not be the same as that determined above
since as mentioned before these weights are not coupled to those treated before. The
unitarity condition gives

R(θ)R(−θ)U0(θ)U0(−θ) = 1 R(θ)R(−θ)D1(θ)D1(−θ) = 1

while the crossing symmetry gives

U(iπ − 2θ)R(iπ − θ)

[
U0(iπ − θ) sinh

(
2θ + iπ

4

)
+D1(iπ − θ) sinh

(
iπ − 2θ

4

)]
=

√
2R(θ)U0(θ)

U(iπ − 2θ)R(iπ − θ)

[
D1(iπ − θ) sinh

(
iπ − 2θ

4

)
+ U0(iπ − θ) sinh

(
iπ − 2θ

4

)]
=

√
2R(θ)D1(θ).

(33)

We can solve these equations separately by requiring

R(θ)R(−θ) = 1 U(2θ)R

(
iπ

2
+ θ

)
sinh

(
iπ

4
− θ

2

)
= R

(
iπ

2
− θ

)
(34)

so thatR(θ) is given byR0(θ) in equation (7) withλ = 1
4. While U0,D1 satisfy

U0(θ)U0(−θ) = 1 D1(θ)D1(−θ) = 1 (35)

and

U0(iπ − θ) sinh

(
2θ + iπ

4

)
+D1(iπ − θ) sinh

(
iπ − 2θ

4

)
=

√
2U0(θ) sinh

θ

2

D1(iπ − θ) sinh

(
iπ − 2θ

4

)
+ U0(iπ − θ) sinh

(
iπ − 2θ

4

)
=

√
2D1(θ) sinh

θ

2
.

These two sets of equations are compatible with equations (26), (22), hence they contain
only two independent relations. Substituting the ratio ofD1, U0 into the above we get a
relation betweenU0(θ) (D1(θ)) andU0(iπ − θ) (D1(iπ − θ)):

U0(θ)

U0(iπ − θ)
= i coshθ2(1 + A sinh θ2)

sinh θ2(1 + iA coshθ2)

D1(θ)

D1(iπ − θ)
= i coshθ2(1 − A sinh θ2)

sinh θ2(1 − iA coshθ2)
.

These relations together with equation (35) can determineU0(θ) andD1(θ) up to the CDD
factor:

U0(θ) =
(

sinh i1
2

sinh θ2
+ 1

)
R(θ)R(iπ − θ) D1(θ) =

(
sinh i1

2

sinh θ2
− 1

)
R(θ)R(iπ − θ)

R(θ) = 0(−iθ
2π )

0( 1
2 − iθ

2π )

∞∏
l=1

0( 12π − iθ
2π + l)0(− iθ

2π − 1
2π + l − 1)02(− iθ

2π + l − 1
2)

0( 12π − iθ
2π + l + 1

2)0(− iθ
2π − 1

2π + l − 1
2)0

2(− iθ
2π + l − 1)

whereA−1 = i sin 1
2 .

Finally, we consider the case whereX
1
2
10, X

1
2
01 are zero to begin with. Then unitarity and

crossing symmetry are the only conditions that can be used to determinedU 1
2
,D 1

2
. These

conditions give

R(θ)R(−θ)U 1
2
(θ)U 1

2
(−θ) = 1 R(θ)R(−θ)D 1

2
(θ)D 1

2
(−θ) = 1.
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and

U(iπ − 2θ)R(iπ − θ)U 1
2
(iπ − θ) sinh

iπ − θ

2
= R(θ)U 1

2
(θ)

U(iπ − 2θ)R(iπ − θ)D 1
2
(iπ − θ) sinh

iπ − θ

2
= R(θ)D 1

2
(θ).

Again, we separately requireR(θ) to satisfy the same relations given in equation (34),
andU 1

2
,D 1

2
to satisfy

U 1
2
(θ)U 1

2
(−θ) = 1 D 1

2
(θ)D 1

2
(−θ) = 1 (36)

and

U 1
2
(iπ − θ) sinh

iπ − θ

2
= U 1

2
(θ) sinh

θ

2

D 1
2
(iπ − θ) sinh

iπ − θ

2
= D 1

2
(θ) sinh

θ

2
.

From these relations, we findU 1
2
(θ) = D 1

2
(θ) = i/[sinh(θ/2)σ (π/2,−iθ)] where σ is

defined in (8).
To summarize, we found two mutually exclusive sets of solutions forU0, D1, U 1

2
, D 1

2
,

X
1
2
10, X

1
2
01. The first set has a non-vanishing off-diagonal element (X

1
2
10 6= 0) and introduces

the undetermined parametersA,B,C, while the second set only allows diagonal scattering

(X
1
2
10 = 0) with one free parameterA. As for the number of free parameters, we should

keep in mind the further two parameters appearing in the SG soliton sector. Therefore
there are in total five or three parameters for the boundary scattering theory. It should be
remarked that our results are based on the assumption that the boundary scattering matrix is
in the factorized form given in equation (19), so we only have proof that for the scattering
amplitudes that involveU0,D1 are indeed factorized. It is not known whether there are

other non-factorized scattering matrices that involveU 1
2
, D 1

2
, X

1
2
10 andX

1
2
01.

4. Discussion

Our results on the scattering matrix suggest that there are at least two integrable boundary
Lagrangians for the SSG model. From the number of parameters in the theory, we claim
that the non-diagonal scattering theory corresponds to the SSG model with the boundary
potential given in equation (18) where five parameters are introduced. On making this
claim, we have assumed that there is no other integrable boundary Lagrangian with the five
parameters. On the diagonal scattering theory with three parameters, we do not know which
is the boundary potential it corresponds to.

It is not clear in general how the five parameters in the scattering theory and the
Lagrangian are related at this moment except for a few special cases. For3 = ∞ with
arbitraryM, ε, ε̄, the topological charge is preserved, therefore topological charge violating
amplitudes should be zero. Since ourR-matrix has a factorized form in such a way that
the SUSY sector is separated from the topological sector,Q± = 0 (k = 0) irrespective of
the SUSY sector. For3 = 0 with arbitraryM, ε, ε̄, the charge conjugation symmetry is
preserved, and solitons and antisolitons irrespective of their SUSY charges behave in the
same way. This meansP+ = P− andQ+ = Q−, or ξ = 0.

For other special cases, it is more convenient to re-express the SUSY sector in terms
of the SUSY eigenstate,|B±〉 and |F±〉 defined by

|B±〉 = 1√
2
(|K±

0 1
2
〉 + |K±

1 1
2
〉) |F±〉 = 1√

2
(|K±

0 1
2
〉 − |K±

1 1
2
〉)
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|B±〉 = 1√
2
(|K±

1
2 0

〉 + |K±
1
2 1

〉) |F±〉 = 1√
2
(|K±

1
2 0

〉 − |K±
1
2 1

〉).

Now solitons and antisolitons carry a well-defined fermion numberF , say,F = 0 for |B±〉
andF = 1 for |F±〉. If we rewrite the boundaryR-matrix in this basis, one finds

B±(θ)B = 1
2(D 1

2
+ U 1

2
+X+)B±(−θ)B + 1

2(D 1
2
− U 1

2
+X−)F±(−θ)B

F±(θ)B = 1
2(D 1

2
− U 1

2
−X−)B±(−θ)B + 1

2(D 1
2
+ U 1

2
−X+)F±(−θ)B

B
±
(θ)B = 1

2(U0 +D1)B
±
(−θ)B + 1

2(U0 −D1)F
±
(−θ)B

F
±
(θ)B = 1

2(U0 −D1)B
±
(−θ)B + 1

2(U0 +D1)F
±
(−θ)B

(37)

whereX± = X
1
2
10 ±X

1
2
01.

Now consider the case whereε = ε̄ = 0. Since the Lagrangian preserves the fermion
number, the fermion number violating amplitudes in theR-matrix should vanish. By

choosing a gauge, we can fixX
1
2
01 = X

1
2
10. This leavesD 1

2
= U 1

2
andU0 = D1, which

meansA = C = 0 if ε = ε̄ = 0. For more complete relations, it is desirable to consider
the boundary scattering of the SSG bound states since the lowest massive bound states are
φ andψ fields appearing in the Lagrangian. One can use the bootstrap procedure for this
computation, although we will not pursue it here. With theS-matrices of the bound states,
one can examine the suspersymmetry aspects of the model in terms of the free parameters
and make comparison with that found in [6]. We hope to report on this in the future.

It is interesting to note that the boundary SSG model introduces extra boundary poles
in addition to those from the SG model, which in the physical strip may be interpreted as
resonance states in the supersymmetric theory with a boundary.

As an extension of this work, one can also consider therestrictedSSG model on a half-
line, in which case the bulk scattering matrix has the factorized form given in equation (12),
by assuming that the boundaryS-matrices are also factorized, their expressions can be
immediately read off from [12] as a tensor product of the boundaryS-matrices of RSOS(4)
and RSOS(p).
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